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We study the static properties of cubic blue phases by numerically minimizing the three-dimensional,
Landau–de Gennes free energy for a cholesteric liquid crystal close to the isotropic-cholesteric phase transition.
Thus we are able to refine the powerful but approximate, semianalytic frameworks that have been used
previously. We obtain the equilibrium phase diagram and discuss it in relation to previous results. We find that
the value of the chirality above which blue phases appear is shifted by 20%stoward experimentally more
accessible regionsd with respect to previous estimates. We also find that the region of stability of theO5

structure—which has not been observed experimentally—shrinks, while that of blue phase IsO8
−d increases thus

giving the correct order of appearance of blue phases at small chirality. We also study the approach to
equilibrium starting from the infinite chirality solutions and we find that in some cases the disclination network
has to assemble during the equilibration. In these situations disclinations are formed via the merging of isolated
aligned defects.
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I. INTRODUCTION

Liquid crystals are typically composed of highly aniso-
tropic molecules. They are viscoelastic materials; some of
their properties are typical of a liquid while others are usu-
ally associated with solids. As liquids, they can flow and they
exhibit a viscous response to an applied stress. However,
liquid crystals also possess long-range, orientational order
f1,2g which results from the entropic advantage of aligning
the constituent molecules. The long-range, orientational or-
der is usefully described by the director fieldnW, the coarse-
grained, average, molecular orientation. In a cholesteric or
chiral nematic liquid crystalnW has a natural twist deformation
along an axis perpendicular to the moleculesf1,2g. Examples
of cholesteric liquid crystals are DNA molecules in solution,
colloidal suspensions of bacteriophagesf3g, and solutions of
nematic mixtures with chiral dopants which are widely used
in display devices.

A particularly intriguing phase of liquid crystals is ob-
tained by slowly cooling down a liquid crystal from the iso-
tropic into the cholesteric phase. Instead of a direct transition
into a helical configuration, it was found experimentally that
the system passes through a series of first-order phase tran-
sitions, all of which occur in a temperature range of roughly
1 K f4,5g. These phases are known as blue phases. Typically
f4g, experiments report a series of at least three phases inter-
vening in this small temperature range. The series of transi-
tions is often as follows: isotropicsId→blue phase IIIsBP
III d→blue phase IIsBP IId→blue phase IsBP Id→cholesteric
sCd. BP I and BP II display a cubic symmetry, while BP III
has an amorphous nature. Blue phases are now beginning to
find applications in lasersf6g and in electric field driven de-
vices f7g.

Blue phases provide a particularly fascinating example of
liquid crystal ordering as they correspond to complicated di-
rector fields which, even in equilibrium, are threaded by a
regular network of disclinationsf8–13g. Identifying their
structure presented a considerable theoretical challenge the

resolution of which is clearly summarized in the review by
Wright and Merminf4g.

In the literature attention has mainly focused on four dif-
ferent candidates for the cubic blue phases. The nomencla-
ture used here refers to the symmetry group which charac-
terizes the lattice of disclinations formed in the blue phases
following f4,11,12g. O2 has the symmetry of a simple cubic
lattice,O8

+,− andO5 that of a body-centered-cubic lattice. The
two O8 phases are candidates for BP I as they have the same
octahedral symmetry, whileO2 has been proposed as a model
for BP II. The defect structure in each phase in shown in Fig.
1. In O2 and inO5 the defect lines merge in the center of the

FIG. 1. Defect structure whereg=2.80 andA0=0.001 forstop
leftd O2, sbottom leftd O5, stop rightd O8

+, andsbottom rightd O8
−.
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unit cell, whereas in the octahedral phases the defects avoid
each other.

The Q tensor theory, in which the local conformation of
the liquid crystal is specified by a tensor, and not only by the
director field nW, is the natural language to understand the
equilibrium properties of blue phases because it is able to
capture their inherent biaxialityf4g. With the advent of more
powerful computers it is now possible to numerically mini-
mize the free energy for any value of the chiralityk without
further approximation than that inherent in the free energy
expression itself. This is the program we follow in this paper.

We determine the equilibrium phase diagram which speci-
fies which of the cubic blue phases has the lowest free en-
ergy as a function of the system parameters. We find a phase
diagram qualitatively similar to that found in earlier work
and compatible with the assignments BP I=O8

− and BP II
=O2. However, there are quantitative differences. In particu-
lar the results show that the triple point between the choles-
teric and blue phases is lowered in chirality by around 20%.
We also show that the region of stability ofO5 shrinks and
that of O8

− increases with respect to the previous estimates.
The revised phase diagram is more compatible with observa-
tions suggesting that the Landau–de Gennes theory is suffi-
cient to explain the static observations on blue phases. Fi-
nally, we characterize the approach to equilibrium and in
particular we describe the dynamic pathway by which the
disclination structure ofO8

− assembles in the simulations.

II. LANDAU–de GENNES THEORY FOR CHOLESTERIC
BLUE PHASES

The equilibrium properties of the liquid crystal are de-
scribed by a Landau–de Gennes free energy density ex-
panded in terms of a tensor order parameterQ. This is re-
lated to the direction of individual molecules,n̂, by Qab

=kn̂an̂b− 1
3dab

l where the angular brackets denote a coarse-
grained average and the Greek indices label the Cartesian
components ofQ. The tensorQ is traceless and symmetric.
Its largest eigenvalue,23q, 0,q,1, describes the magnitude
of the order.

The free energy comprises a bulk termFb ssummation
over repeated indices is implied hereafter in our notationd

Fb =
A0

2
S1 −

g

3
DQab

2 −
A0g

3
QabQbgQga +

A0g

4
sQab

2 d2

s1d

and a distortion term,Fd, which for cholesterics isf1,4g

Fd =
K

2
fs]bQabd2 + seazd]zQdb + 2q0Qabd2g, s2d

whereK is an elastic constant andq0=2p /p, with p the pitch
of the cholesteric liquid crystal. The tensoreazd is the Levi–
Civita antisymmetric third-rank tensor,A0 is a constant andg
controls the magnitude of the ordersphysically it corre-
sponds to an effective temperature or concentration for ther-
motropic and lyotropic liquid crystal, respectivelyd. This free
energy has the same functional form of the one employed in
Refs.f9,10g, but the latter is more general as it contains one

more parameter in the bulk free energy density term.
Of particular interest for the present discussion of blue

phase equilibriumf4g are two quantities, the chiralityk, and
the reduced temperaturet. These are defined in Ref.f10g and
in our formulation they can be found via

k =Î108Kq0
2

A0g
,

t =
27A0s1 − g/3d + 108Kq0

2

A0g
=

27s1 − g/3d
g

+ k2. s3d

Approaches to study the equilibrium properties of blue
phases which have given a great deal of insight into the
phase behavior have so far been based on an expansion in the
parameterk. High chirality theories are strictly valid for in-
finite k. In that case an infinite number of exact minimizers
of the free energy density can be found as an arbitrary sum of
biaxial helicesf4g. Low chirality theories have also been for-
mulated. These rely on the Frank free energy defined in
terms of the coarse grained director fieldnW instead ofQ: this
is equivalent to assuming a uniaxial order parameter.

In this work we do not make assumptions about the value
of k but rather minimize the Landau–de Gennes free energy
by numerically solving an equation of motion forQ f14g

]Qab

]t
= GHab, s4d

whereG is a collective rotational diffusion constant.
The term on the right-hand side of Eq.s4d describes the

relaxation of the order parameter toward the minimum of the
free energy. The molecular fieldH which provides the driv-
ing force is related to the derivative of the free energyF by

H = −
dF
dQ

+ sI /3dTr
dF
dQ

, s5d

where Tr denotes the tensorial trace. From Eqs.s1d and s2d,
the molecular field is explicitly

Hab = „A0s1 − g/3d + 4Kq0
2
…Qab − A0gSQagQgb −

dab

3
Qgd

2 D
+ A0gQgd

2 Qab + K]g
2Qab − 4Kq0eagd]gQdb. s6d

III. NUMERICAL ALGORITHM

Our aim in this work is to numerically minimize—by
solving Eq.s4d using a lattice Boltzmann algorithm—the free
energies of the cubic blue phasesO2, O5, O8

+, andO8
−. In this

section we report the procedure used.
The equilibrium state for chosen values of chiralityk and

reduced temperaturet was obtained as the steady-state solu-
tion of the equation of motions4d. The initial condition for
each phase was taken as its configuration for infinite chirality
sk=` or A0=0d for which exact analytical expressions are
availablef4g. In the k=` limit the Q tensors characterizing
the blue phases retain the correct topology of the disclination
lines. As expected this was preserved under the dynamics
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allowing us to minimize the free energy for a structure with
the chosen network of disclinations for any value oft andk.

For completeness we report here the initial configurations
chosen in this work.sNote that in all cases the components
yy, zz, xz, and yz are obtained by cyclic permutation from
those given below.d

The initial configuration forO2 is

Qxx = Ahcoss2q0zd − coss2q0ydj, Qxy = − A sins2q0zd,

s7d

whereA.0 is an arbitrary amplitude.
That for O5 is

Qxx = Ah2 cossÎ2q0ydcossÎ2q0zd − cossÎ2q0xdcossÎ2q0zd

− cossÎ2q0xdcossÎ2q0ydj, s8d

Qxy = AhÎ2cossÎ2q0ydsinsÎ2q0zd − Î2cossÎ2q0xdsinsÎ2q0zd

− sinsÎ2q0xdsinsÎ2q0ydj,

whereA.0.
Those forO8

+,− are

Qxx = Ah− 2cossÎ2q0ydsinsÎ2q0zd + sinsÎ2q0xdcossÎ2q0zd

+ cossÎ2q0xdsinsÎ2q0ydj, s9d

Qxy = AhÎ2cossÎ2q0ydcossÎ2q0zd + Î2sinsÎ2q0xdsinsÎ2q0zd

− sinsÎ2q0xdcossÎ2q0ydj,

whereA is positive forO8
+ and negative forO8

−.
In general, the minimum free energy for blue phases is not

attained when the periodicity of the disclination lattice
matches the pitch of the cholesteric helixp but when the unit
cell is larger. This is accounted for by considering alternative
initial conditions withq0 substituted byrq0 f8–10g, with r
,1. Since the lattice periodicity is bigger than that for the
infinite chirality solutions,r is referred to as a “redshift.” We
checked the validity of the values ofr suggested in Ref.f10g
and then used them to build the initial conditions. If redshift
is not accounted for, the region of stability of blue phases
does not change significantly, but theO8

− phase is not found.
Details of the lattice Boltzmann algorithm used to solve

the equation of motion are given in Refs.f15–17g. Calcula-
tions were performed on a parallel machine, for a
32332332 cubic lattice. This means that, for example, in
the case ofO2 a cholesteric pitch was discretized into 64
lattice points. Typically, the simulation of one point in the
phase spacesk ,td ran on eight processors and required
8 hours of computational time. Periodic boundary conditions
were used throughout. To ensure that equilibrium was
reached, we required that the variation in the free energy
after 200 iterations of Eq.s4d was smaller than 10−4 before
ending the run. A convenient value ofG, ensuring numerical
stability and fast computation time, was 0.33775.

The parameters defining the free energy were chosen to
match typical values for cholesterics. In what follows the
points on the phase diagram will be labeled by theirsk ,td sas
in Ref. f10gd or sA0,gd values. These can be related straight-
forwardly via the transformation in Eq.s3d.

IV. RESULTS

In this section we report the results obtained for the defect
structure of the blue phases, and the equilibrium phase dia-
gram in the vicinity of the isotropic-cholesteric transition.
We also consider the dynamics of the defect lines as equilib-
rium is approached.

A. Defect structure: O2, O5, O8
+, and O8

−

As a first check, we compute the defect structure associ-
ated with the cubic blue phases after equilibration. We
chooseA0=0.001 andg=2.8, while the elastic constantK
=0.01 for O2, and K=0.005 forO5 and O8

+,−. These corre-
spond to a chiralityk=1.93 and a reduced temperaturet
=4.37. The resulting disclination line networks are shown in
Fig. 1. The tubes in the figure represent regions of the blue
phase unit cell in which the order parameter drops below
some specified threshold, i.e., they represent disclination
lines. The thickness of the tubes is related to the width of the
defect cores.

These structures are in good agreement with those ob-
tained in Refs.f10–12g. We note that the structure of the
defects depends on the parameters. IfA0 or g are increased,
i.e., if k decreases, then the width of the disclinations de-
creases and the drop in order parameter at the defect cores
becomes shallower.

We also checked the three-dimensional director field pro-
file and found the presence of distinct regions of double twist
separated by the defects shown in Fig. 1, in qualitative agree-
ment with the usual theoretical picture of blue phases
f9,10,13g.

B. Phase diagram

Next we report results for the free energy of the equili-
brated blue phases. In Fig. 2 we show free energy curves for
O2, O5, O8

+, O8
− and the isotropic and cholesteric phases for

A0=0.001 and variableg. It can be seen that blue phases
appear near the transition to the isotropic phase. AsA0 in-
creases, the region of stability of blue phases shrinks. This is
in agreement with previous experimental and analytical re-
sults in the literaturef5,10–12g.

In Fig. 3, we show the phase diagram in thesk ,td plane
which identifies for every point which of the phases,O2,O5,
O8

+,−, cholesteric or isotropic, has the minimum free energy.
For comparison we show, in the same plane, the phase dia-
gram obtained in Ref.f10g which employed a Fourier expan-
sion of the tensor-order parameterQ around thek=` limit.
We stress that the main difference is that in our case we relax
the structuresswith the disclination network topology sug-
gested in Ref.f10gd by dynamically solving Eq.s4d. So the
configurations used to construct our phase diagram are actual
sin general locald minima of the Landau–de Gennes free en-
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ergy. In Ref.f10g, the configurations found correspond to the
free energy minima within a restricted phase space in which
theQ tensor expression is constrained to be a sum of spheri-
cal harmonics of ordermø2 with variable coefficients.

Overall, we find qualitative agreement in thatsad the
stable phases foundsfor the parameters investigated hered are
O2, O5, andO8

−, sbd O5 appears for high chirality only, and

scd the phase diagram is consistent with the assignment of
BP I asO8

− and of BP II asO2 proposed inf10,12g. However,
a few relevant differences should be stressed. First, the re-
gion of stability ofO5 is shifted to unphysically high values
of the chirality *2. sValues ofk&1.2 are found in choles-
terics.d This result is consistent with the observations, which
ruled out structures ofO5 symmetry from the known blue
phases. The region of stability ofO8

− expands and reaches
lower chirality values. The critical point below which blue
phases are no longer stable is also shifted fromk,0.6 to
below k=0.5 sdeeper into the experimentally accessible re-
giond. Pleasingly, this leads to the correct order of appear-
ance of BP I and BP II as the chirality is increasedsas found
in the experimentsd. This was not achieved before within the
Landau–de Gennes framework.

To construct the phase diagram in Fig. 3, we used the
values of the redshift from Ref.f10g, which were obtained
within the approximate framework detailed above. As a
check, for a few points in the phase diagram, we equilibrated
systems with different redshifts. Plots of free energy versus
redshifts for two points in the phase diagram are shown in
Fig. 4. At all points we tested we found that the redshift
values in Ref.f10g corresponded very closely to the free
energy minimum. In this way we feel confident that an ex-
tensive calculation taking into account all possible redshifts
for all data points, which is numerically extremely expen-
sive, would give a quantitatively very similar phase diagram.

The discrepancy between the phase diagram obtained here
and the one given in Ref.f10g show that high-order Fourier
components ofQ are important at least in some regions of
the phase diagram. Indeed the authors of Ref.f10g noted that
in a large part of the region where the phase diagrams differ
the energies of the various phases are very close. Thus con-
sidering a larger variational space could well change the
phase boundaries.

C. Dynamics of the approach to equilibrium

It is interesting to consider the dynamics of the approach
to equilibrium of the blue phases from the infinite chirality

FIG. 2. Free energy ofO2, O5, O8
+, O8

− and the cholesteric helix
as a function ofg for A0=0.001.

FIG. 3. Top: phase diagram in thesk ,td plane obtained numeri-
cally sthis workd. Bottom: phase diagram from Ref.f10g.

FIG. 4. Plot of the free energiesssimulation unitsd versusr of
O2,O8

+,O8
− for two points in thesA0,gd planefs0.006,3d for the top

three curves ands0.002,3.5d for the bottom threeg. Dashed lines are
quadratic fits. Squares and stars show the numerical minimum and
the one found in Grebelet al. f10g, respectively.
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initial states. TheO2 andO8
− structures are initially quite far

from their equilibrium configurations, while theO5 and O8
+

configurations are closer. This means that the free energy for
O5 is lower than that ofO2 or O8

− at the beginning of the
simulations. During equilibration, the finite chirality deforms
the tensor configurations ofO2 andO8

− via a process which
can be suggestively compared to the acquisition of an infinite
number of harmonics in the language off10g and the curves
eventually cross. The approach to equilibrium of the free
energy was in all cases found to be well represented by an
exponential decay to the equilibrated value, with the decay
rate playing the role of a relaxation time. Since the transi-
tions are allsweaklyd first order this is as expected on general
grounds.

The most interesting dynamics of approach to equilibrium
is that ofO8

−. In this case the initial structure does not closely
resemble the equilibrium structuressee Fig. 5d. In particular
the disclination line along the axisf111g is only partially
present. During equilibration, it assembles by the formation
of isolated local defects aligned alongf111g which then
merge into a disclination line. The dynamical evolution was
found to be almost independent of the values ofA0Þ0 andg
studied. It would be interesting to follow the evolution of the
disclination line experimentally to see whether this effect can
be realistic. Calculations are currently underway to check if
the same pathway is followed when the full hydrodynamic
equations of motion of the liquid crystal are solved.

V. CONCLUSIONS

In conclusion, we have numerically minimized the
Landau–de Gennes free energy of a cholesteric liquid crystal
and identified the region of stability of the blue phases. It
was possible to obtain results for any values of the chirality
k, that is, for any degree of biaxiality of the tensor order
parameter. Our results qualitatively confirm those obtained
previously using expansions for large or smallk. However
there are quantitative differences; in particular the blue
phases first appear at a value ofk,20% smaller than in the
approximate minimizations. Also, it is interesting to note that
the full numerical solution presented here produces the cor-
rect order of appearance of BP I and BP II at low chiralities,
while theO5 phase, which was not observed in experiments,
is relegated to unphysical values of the chirality. We finally
followed the approach to equilibrium. In the case ofO8

− the
disclination network assembles during the equilibration via
an intermediate state in which aligned isolated defects appear
and then join to form the disclination line along the cube
lattice diagonal.

Note that in two rather recent papersf18,19g, it was found
that adding fluctuations to the Landau–de Gennes free energy
could render the phase diagram more realistic in that, e.g.,
the region of stability ofO5 was restricted. Here we find a

similar result by an exact minimization of the mean field free
energy without including fluctuations.

Finally, our approach can be generalized to study the ef-
fect of an electric field on the phase diagram as well as the
dynamics of the switching of a blue phase device, such as the
one proposed in Ref.f7g. Further work is underway along
these lines.
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FIG. 5. Evolution of the defect structuresto be followed from
left to right and top to bottomd for g=2.80 andA0=0.001, for the
O8

− configuration. The initial configuration is stable forA0=0.
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